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Abstract 
The Semantic Web is an initiative that aims to enable data from different sources to be 
combined in a consistent way. It is particularly useful when the schemas and terminologies of 
different data sets are to be merged; they differ between organisations or change over time.  
Semantic Web technologies have been successfully applied to data integration in fields such as 
Bio-Informatics, Life Sciences, GIS (Geographic Information Systems) and Material Sciences.  

Resource Description Framework (RDF) is a simple graph-based data model for representing 
information on the Web. SPARQL is the proposed standard for querying RDF and both are 
part of the W3C’s Semantic Web Activity.   

The current SPARQL specification shows a strong bias towards underlying implementations 
such as SQL and lacks a formal model.  Previous work by Cyganiak, Frasincar et al., Harris 
and Shadbolt, and Pérez et al. [5, 10, 16, 22] has highlighted the need for a formal model in 
order to improve consistency and clarity of the existing specification. A formal model would 
also allow independence between implementation and specification, greater consistency with 
RDF, and the ability to improve implementations without affecting the user’s view of the 
system. 

The relational model is a candidate for such a formal model as it is a mature formal model that 
is well understood and provides other features such as efficient query optimisation and 
distribution. 
 
Building on previous work by Galindo-Legaria, this thesis provides a mapping from RDF and 
SPARQL using the relational model and shows the desirable outcomes of such an approach.  
The SPARQL operations UNION and OPTIONAL were implemented using the relational 
operators outer union and minimum union respectively. Implementation details using the 
JRDF library are described including the use of an order independent minimum union 
implementation.  Some of the advantages in applying pre-existing relational optimisation 
techniques are explored. 

It is shown that using the relational model as a basis for SPARQL provides an easier to 
implement, more efficient, more consistent and extensible query language than is currently 
provided.  This approach allows the reuse of existing relational optimisation techniques and 
can be used as a basis to extend SPARQL functionality. 
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Overview 

1.1 Introduction 
Resource Description Framework (RDF) is a part of the W3C’s Semantic Web initiative.  
RDF is a simple graph-based data model for representing information on the Web [18]. It has 
a formal data model, with formal semantics, and is designed to be simple, open, and extensible 
[18].  An RDF graph is a set of triples; each triple is made of a Subject, Predicate and Object.  
Triples are used to create relationships between the subject and object using different 
predicates [18]. 

SPARQL (SPARQL Protocol And Query Language) is the W3C’s proposed standard for 
querying RDF [23].  SPARQL is one of a number of query languages designed to query 
formal representations of data such as XML (eXtensible Markup Language), Topic Maps 
and RDF which consist of data models represented as trees, topics and associations, and 
directed graphs respectively [1].  Similar to other query languages, SPARQL allows users to 
declaratively specify the conditions required for data to be retrieved rather than explicitly 
describing the individual steps required to return the data.  

SPARQL provides definitions for:  

• Simple matching of RDF data,  
• The ability to combine multiple matches together,  
• Matching data types such as integers, literals, etc. based on conditions such as greater 

than, equal to, etc., 
• Optionally matching data – that is, if certain data does exist it must meet a certain 

criteria but the query does not fail if the data doesn’t exist,  
• Combining RDF data sets together to query at the same time, and  
• Ordering and limiting matched data.  

 
The definitions listed above are somewhat loose, however.  SPARQL has yet to be described 
formally using a set-based data model that follows RDF’s abstract model.  A data model, as 
defined by Date [6], “provides an abstract, self-contained, logical definition of data structures, 
data operators and so forth, that together make up the abstract machine with which the user 
interacts”.     

Haase, et al. state that the “…underlying data model directly influences the set of operations 
that should be provided by a query language” [14]. Furthermore, it is highlighted that the 
design of an RDF query language should support [14]:  

• The RDF abstract data model,  
• Formal semantics and inference,  
• XML schema data types and 
• The ability to handle incomplete or contradictory information. 

 
The beneficial properties of a query language for the Semantic Web defined by Bailey et al. 
[1] include: 

• Referentially transparent - “within the same scope, an expression always means the 



 2 

same”, 
• Strong answer closure - the result of a query can be used as the input for further 

querying, 
• Set-oriented functional – also known as a backtracking-free logic programming, 
• Incomplete queries and answers - support for data on the Web that may not have 

defined schemas, 
• Multiple serialisation aware - able to serialise data to various formats including XML, 

OWL, RDF and Topic Maps, and 
• Queries that support reasoning capabilities - the ability to query different data sources 

and infer new statements. 
 
The relational model is an existing model that could be used to provide a compatible set-
based, formal model.  This model has long been used as the basis for database management.  
Date defines it as consisting of three components: structure, integrity and manipulation [6].  
It has been extended to support rules and inferencing [21], support for XML schema data 
types and other data types [8], to query hierarchical data [9] and to support merging data, 
potentially incomplete or contradictory information, through the use of outer joins and other 
techniques [13].  The relation model supports answer closure and referential transparency 
(for read-only queries). 

The set of relational operators combined with the relational model are collectively called the 
relational algebra [6]. The operations on relations originally defined by Codd [4] include: set 
operations, projection, join, Cartesian product, and restriction.  It is from these original 
operators that other relational operations have been derived including: restrict, project, join, 
and union [6].  In SPARQL they are analogous with: triples matches, SELECT, ‘.’ (join), and 
UNION. 

An alternative to the relational model is SQL (Structured Query Language).  SQL is often seen 
as an implementation of the relational model even though it has numerous incompatibilities 
with the relational model such as bag instead of set semantics, column ordering, duplicates and 
handling of nulls [6].  SQL has been formally reconstructed using bags (a collection of values 
that allow duplicates) rather than sets (a collection of values that allows no duplicates) [20].  
From this work it’s shown that operations such as DISTINCT and aggregate functions are 
only applicable for bags and not sets.  SQL’s use of duplicate values can also cause problems 
with both optimisation and query processing [6]. 

SQL also has other problems [20] such as,  

“…no one really knows what SQL is, since there are many different versions, it is widely 
accepted that any version of SQL has at least two features which are not present in the 
relational algebra: aggregate operators…[and it] allows a limited form of nesting by using 
the GROUP-BY construct…one needs bag semantics for the correct evaluation of 
aggregate functions.”   

Software that depends on SQL frequently has to adapt to each vendor specific 
implementation due to these differences. 

Similarly, SQL’s UNION operator has a number of problems in that it relies on a column 
ordering being used to match values rather than the columns being the same type (as defined 
by relational algebra) [7].  Date claims, “…given any two SQL tables, there are typically 
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many distinct tables that can all be regarded as a union between two given SQL tables”. 

The distinct differences between SQL and RDF are the reason why SQL is not a natural 
choice as the basis of an RDF query language.  It is clear than any formal SPARQL definition 
should abstract away any dependence from SQL and be solely based on the data model it is 
querying, RDF.   

SQL does have a large industry following so it is crucial that a mapping from SPARQL to 
SQL exists.  Work on this mapping has already occurred [2], but further work, especially 
using known SQL optimisation techniques [19], has yet to occur. 

Previous work has highlighted specific limitations of the current SPARQL specification [5, 
10, 16, 22] and subsequent implementations.  To overcome these issues an underlying formal 
model should be established.  However, little work has been done in developing and evaluating 
an RDF query language that is built on formal set-based models while maintaining a focus on 
SPARQL. 

As both the RDF model and the relational model are both propositional and set-based it is 
likely that a compatible model for querying RDF can be provided. This should lead to two 
direct advantages for users and implementers: 

1. It provides a formal model that unambiguously outlines a consistent set of principles to 
create a coherent foundation for the formulation of queries.  This provides a stable set 
of fundamentals that remain constant as implementations or syntaxes evolve over time. 

2. It allows the continuing work being done on the relational model to be applied to 
querying RDF. 
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2 Related Work 

2.1 Introduction 
The main work to date dealing with mapping SPARQL to the relational model has been 
motivated, in part, to efficiently answer queries.  The use of NULL, duplicates and the order 
in which operations are executed have been the main incompatibilities highlighted so far.  With 
a clear definition of SPARQL operations such as UNION and OPTIONAL, previous work 
on efficient query implementations is highlighted. 

2.2 Motivations for Creating a Formal Model 
SPARQL has previously been compared and mapped to the relational model by Cyganiak [5], 
and Harris and Shadbolt [16].  A shared motivation for these works has been to make 
available the previous experience dealing with query planning and optimisation. Harris 
specifically mentions that RDF implementations do not take advantage of database engines’ 
built in query optimisers and knowledge of indexes [16].   

Pérez et al. [22] developed a formal model in an attempt to remove any redundancy or 
contradictions within the SPARQL specification.  They also shared a similar motivation with 
previous relational mapping work, to reuse existing work on query planning and optimisation. 

Along similar lines, the paper by Frasincar et al. [10] when rationalizing the requirement for 
an RDF algebra stated that issues of query optimisation “are mostly neglected”.  The types 
of optimisation proposed by Frasincar et al. included efficiently performing extraction of data 
and constructing results [10]. 

2.3 The Use of NULL 
Cyganiak and Pérez et al. both note that unbound (or NULL values) in SPARQL lead to 
several inconsistencies with the relational model.  Cyganiak says, “The SPARQL model does 
not, for example, distinguish between an OPTIONAL variable that is unbound in some 
solutions, and a variable that is not used in the query at all.”  This result leads to confusion as 
to what an unbound result means. 

A parallel occurs in SQL databases through the use of NULLs to indicate missing information 
[6].  The issue related to NULL values has been debated by Date and Codd [6], “nulls have 
no place in the relational model.”  NULLs can have a direct impact on practical applications.  
For example, Henly [17] has applied criticism of NULLs to the field of geoscience and notes 
that NULL information can be caused by multiple reasons such as “not worthy of comment”, 
“to be added later”, “lost”, or indicates that the value is between known ranges but has not 
registered significantly to be recorded. 

 

2.4 Duplicates 
The existence and semantics of SPARQL operations such as DISTINCT and UNION appear 
to be based on underlying implementations, especially SQL, rather than following RDF 
semantics.  RDF semantics clearly define sets of statements that express a proposition [18].  
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SPARQL, on the other hand, describes the possibility of duplicates and it makes no guarantee 
of a consistent approach to returning duplicates [23].  The same duplicate proposition is a 
tautology, “If something is true, saying it twice doesn’t make it any more true.” [6]. 

Date’s main prescription against duplicates [6] is: “…certain expression transformations, and 
hence certain optimizations, that are valid in a relational context are not valid in the presence 
of duplicates.”  He presents [6] twelve different queries that produce nine different results 
each with their own degree of duplication.  He concludes that, “you should always ensure 
that query results contain no duplicates…by always specifying DISTINCT in your SQL 
queries…if you follow this advice…there’s no good reason for allowing duplicates”. 

2.5 Compositional vs Operational Semantics 
A lot of work has been done since the inception of the relational model [24].  The foundation 
of this work has been accomplished by constructing operator trees to define a search space.  
The search space is explored for the most efficient operations by replacing operations with 
equivalent ones or by changing the order of execution.  This is generally possible because of 
mathematical properties of the relational operators such as commutativity and associativity.  
In traditional optimisers such as System-R and Starburst a cost model of the query is created, 
operations are optimised and performed in a bottom-up fashion [24]. 

The work of Pérez et al. [22] highlights the distinction in SPARQL between two ways of 
executing queries: compositional and operational.  Operational semantics consists of executing 
“a depth-first traversal of the parse tree of P and the use of the intermediate results to avoid 
some computations.”  An example given is that the query (A OPT (B OPT C)) is executed by 
first executing A then B and then C.  In other words, operational semantics executes a query 
in a left-to-right, top-to-bottom order.  Compositional semantics executes the queries in a 
bottom-up order of execution.  This would mean that the inner part of the example query, (B 
OPT C), is executed first.  

Both Pérez and Cyganiak discuss the use of compositional over operational semantics when 
evaluating SPARQL queries.  This choice of execution order is especially important for 
determining what the correct results of variables used both inside and outside of constraints 
that include an OPTIONAL clause (Cyganiak refers to it as “The “Nested OPTIONALs” 
Problem” [5]). 

As relational implementations are based on compositional semantics, the rejection will reduce 
the ability to apply existing relational optimisation techniques.  Processing query expressions 
to their conjunctive or disjunctive form for simplification and reordering is largely prevented 
as it depends on operations being associative and commutative. 

2.6 The SPARQL OPTIONAL Operator 
SPARQL’s OPTIONAL operator as defined by Harris [16] “…is used to signify a subset of 
the query that should not cause the result to fail if it cannot be satisfied…it is roughly 
analogous to the left outer join of relational algebra.”  Cyganiak [5] has shown that the 
semantics of OPTIONAL is not compatible with relational algebra.  SPARQL provides “only 
conflicts cause join failure” whereas relational algebra provides “unbound variable causes join 
failure”.  This relationship with left outer join indicates a similar order dependency for 
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OPTIONAL. 

The OPTIONAL functionality in SPARQL is similar to the outer join feature implemented in 
Edutella, a peer-to-peer based system for performing distributed RDF searches [21]. Edutella 
is based on Datalog that adds inference rules to relational databases,  

“Outer join between R and S gives us all the tuples, whether they have matching tuples in 
the other relation or not.  In outer join all the answers terminate in true.  You never get an 
empty answer.  In cases where you ask questions with many variables and some do not 
match, you get an answer, but the result for those variables that did not match are filled by 
NULL.”   

It was found that “inconsistencies in the answers depend on which order the outer join body 
literals are interpreted in.”  It is clear that order dependency in executing queries leads to 
inefficient distribution and uncertainty in which results will be returned from a query.  

2.7 Optimisations Applicable to SPARQL 
A solution to efficiently and unambiguously implementing outer joins in relational algebra was 
presented by Galindo-Legaria [12].  It includes a “hierarchical view of data…where relational 
attributes may be set-based…” and “Instead of having one tuple with parent-child 
information for each child, we present the children as a set associated with the parent.”  This 
has the advantage of removing the requirement for NULLs as place fillers when tables of 
different attributes are operated on.  Instead, tuples contain sets of values for only those that 
are found or “…tuples in a relation may be defined on different sets of attributes, as long as 
they are a subset of the relation scheme”. 

The relational UNION operator was extended to be “untyped” (able to join on unequal 
relation schemes) called outer union [11].  The use of an outer union operation provides the 
similar semantics to SPARQL’s UNION and is consistent with SPARQL’s “only conflicts 
cause join failure” [5].  It also provides a formal, unambiguous definition of the operation. 

Galindo-Legaria has shown that outer join can be implemented using minimum union to form 
join-disjunctive queries.  The advantages are that “disjunction is commutative and associative, 
which is a significant property for intuition, formalisms, and generation of execution plans” 
[11]. 

The applicability of this using the approach suggested by Galindo-Legaria and Rosenthal was 
rejected by Pérez et al.: 

“…classical results about outer join query reordering and optimization by Galindo-
Legaria and Rosenthal are not directly applicable in the SPARQL context because they 
assume constraints on the relational queries that are rarely found in SPARQL…the 
assumption on predicates used for joining (outer joining) relations to be null-rejecting. 
In SPARQL, those predicates are implicit in the variables that the graph patterns share 
and by the definition of compatible mappings they are never null-rejecting…the queries 
are also enforced not to contain Cartesian products, situation that occurs often in 
SPARQL when joining graph patterns that do not share variables. Thus, specific 
techniques must be developed in the SPARQL context.” 

It should be noted that the work of Galindo-Legaria forms the main basis of this thesis and 
contrasts with the claims made by Pérez et al.  It is correct to state that simplification based 
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on null rejection has not been used.  This does not prevent optimising outer joins through 
tuple subsumption or using the definition of UNION proposed by Galindo-Legaria; 
specifically it allows unbound or NULL values within a tuple.  Furthermore, it seems 
premature to discard the use of null rejection simplification in queries as it maybe possible to 
reuse these techniques by treating intermediate results using a slightly non-traditional 
approach.  This approach is discussed in future work. 

Another difference between Pérez et al. and Galindo-Legaria is the definition of left outer join.    
In Pérez et al. it is defined as: 

Ω1 ⟕ Ω2 = (Ω1 ⋈ Ω2) ∪ (Ω1 ∖ Ω2) 

Where Ω is a set of mappings, where a mapping is a partial function of variables (V) to tuples 
(T).  Tuples (T) consist of the positional elements subject (v1), predicate (v2) and object (v3) 
of an RDF statement. 

Galindo-Legaria [12] defines left outer join of two relations R1 and R2 as: 

R1 ⟕ R2 := (R1 ⋈  R2) ⊎ (R1 ⊳ R2) 

Where, ⋈ is the join of R1 and R2 on some predicate, ⊎ is outer union and ⊳ is antijoin.  
Antijoin is defined as: 

R1 ⊳ R2 := R1 ‐ (R1 ⋉ R2) 

This is the difference between R1 and the result of the semijoin (⋉) of R1 and R2.  Where 
semijoin is: 

R1 ⋉ R2 := π(R1) (R1 ⋈  R2) 

Where π(R1) is project on R1 from the results of  ⋈ the join of R1 and R2.  

The important distinction to make is that Pérez et al.’s definition uses the difference between 
two sets of tuples (∖) rather than the antijoin.  In Appendix A.5, Lemma 3 of [22] it is 
shown that:  

(Ω1 ∖ Ω2) = Ω1 ∖ (Ω1 ⋈ Ω2) 

The expanded version of left outer join becomes: 

Ω1 ⟕ Ω2 = (Ω1 ⋈ Ω2) ∪ (Ω1 ∖ (Ω1 ⋈ Ω2)) 

While Galindo-Legaria’s left outer join with antijoin and semijoin expanded becomes: 

R1 ⟕ R2 := (R1 ⋈  R2) ⊎ (R1 ‐ (π(R1) (R1 ⋈  R2))) 

The only difference is the use of semijoin over join.  While both of these operations produce 
the same overall result for left outer join, the use of semijoin is considered superior from the 
point of view of efficiency.  This is highlighted by Galindo -Legaria [12]: 

”Since the join of relations R1, R2 applies some match predicate, it may not preserve all 
tuples from its arguments…This observations is the basis of some query processing 
algorithms to “reduce” relations…” 
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Another simpler version of performing minimum union was also presented by Galindo-
Legaria [11].  Instead of performing a series of operations that includes project, join, and 
antijoin, an approach using outer union followed by tuple subsumption called minimum 
union, was suggested.  Minimum union is both commutative and associative and has a lower 
precedence than join.  This is similar to the assertion in Pérez et al. that SPARQL’s 
OPTIONAL has a lower precedence than its join operation [22]. 

Tuple subsumption is defined as t1 subsumes t2 if t1 has more values that are not null than t2 
and that the values in t2 that are not null are equal to t1.  The removal of subsumed tuples in R 
is denoted as R￬.  The minimum union of R1 and R2 is defined as: 

R1 ⊕ R2 := (R1 ⊎ R2) ￬ 

Left outer join of R1 and R2 is then defined as: 

R1 ⟕ R2 := R1 ⋈  R2 ⊕ R1 

2.8 Other Issues with SPARQL  
Harris [16] defines three other cases where the relational model will have problems processing 
value constraints - specifically within FILTER operations.  They are: 

• Non-relational expressions such as regular expressions,  
• Late bound expressions where variables are created outside their local blocks and 
• Placing constraints in a required block on variables that are only bound in an 

OPTIONAL block.   
 
Similarly, Cyganiak [5] defines a problem for relational algebra where a selection, for example 
during a FILTER operation, can only access variables within it’s own block. 
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3 Methodology 
The feasibility of providing a formal model of SPARQL using the relational model will be 
explored by: 

• Demonstrating how SPARQL operations can be adapted to use the relational model, 
• Extending the relational model using previously discovered methods, 
• Developing a working prototype, and 
• Comparing the working prototype with another SPARQL implementation. 

 
SPARQL defines a series of operations, use cases and semantics.  These were adapted to be 
consistent with an extended relational model and the operations of relational algebra.  The 
mappings will then be contrasted with the existing SPARQL operations and any benefits 
associated will be highlighted. 

The prototype query engine and user interface was developed to allow queries to be 
processed.  The prototype is written using Java 5.0 and includes a user interface developed in 
the Java Swing API.  This query engine was implemented using the RDF library, JRDF.  This 
will include making the following modifications: 

• Mappings from the RDF model to the relational model, 
• Creating a SPARQL parser, 
• Relational constructs such as attributes, tuples and relations, 
• Implementing the relational operations (Project, Restrict, Join, Union, Semidifference 

and Antijoin),  
• Creating a Swing user interface, 
• Adding the ability to execute relational operations in any order, 
• Performing SPARQL queries using the relational operations including extending the 

relational algebra to allow querying of missing data provided by the SPARQL 
operation OPTIONAL, and 

• Creation of tests to validate SPARQL compliance. 
 
This considerably increased the complexity of JRDF with the number of Java classes required 
for implementation increased by nearly a factory of two from 155 to 292.  There was an 
addition of approximately 15,000 lines of code from an existing base of 21,000 with an 
increase from 4857 to 9035 NCSS (Non Commenting Source Statements). 
  
A comparative review is provided between the developed relational system using JRDF and 
Hewlett Packard’s Jena library.   

The sample data, based on FOAF data set and queries provided by the SPARQL test cases is 
used to show the practical advantages of implementing a query engine in this way. 
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4 Mapping RDF to the Relational Model 
An initial investigation into extending the relational model to store and query RDF has been 
performed, with the purpose of ascertaining the practicality of using the relational model to 
make simple queries of RDF data. 

In order to create a simple example of representing the RDF model in the relational model, the 
components of the various systems must be clearly defined and contrasted.  These various 
components include: 

• A concrete interpretation of a RDF graph - Each node in a graph, URI, Literal or 
bnode, is considered distinct if it has different values by character comparison or 
identity in the case of bnodes. 

• The relational model - Consisting of Types, Attribute Names, Attributes, Tuples, 
Headings and Relations. 

• Relational Operators - A small selection including: Restrict, Project and Join. 
• The RDF model - Consisting of RDF triples that can further be broken down into 

positional elements: Subject, Predicate and Object.  Each of the positional elements 
can be of a certain type.  Subjects are either URI References or blank nodes; predicates 
must be URI References; and objects can be URI References, blank nodes or literals. 

 
The following figure shows node value types: URI Reference (URI/IRI), blank node (BNode) 
and literal extend the positional types: Subject, Predicate and Object.   

 
Figure 1. A UML Class Diagram of RDF Nodes and Types in JRDF. 

Using this hierarchy of node types we can create a mapping between the relational and RDF 
components, as shown in the following table: 
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Component Name Description Relational RDF/SPARQL 

Type Name A data type integer, char, sno, 
name 

subject, predicate, 
object, uri, literal and 
bnode 

Variables: ?s, ?city Attribute Name A distinct, descriptive 
name 

status, city, sno, 
sname 

Node Postions: 
subject, predicate, 
object 

Attribute A combination of 
type name and 
attribute name 

status:integer, 
char:city, sno:sno, 
sname:name 

?s:subject, 
p1:predicate, 
?city:object 

Tuple or Tuple Value A set of attribute and 
value pairs 

sno sno(‘s1’), sname 
name(‘smith’), status 
20, city ‘london’ 

?s:subject(#s1), 
p1:predicate(#name), 
o1:object(‘smith’) 

Heading A set of attributes sno sno, sname name, 
status integer, city 
char 

?s subject, p1 
predicate, o1 object 

Table 1. RDF and Relational Components 

A relation contains a heading and a body.  The body contains a set of tuples and as defined by 
Galindo-Legaria, “tuples in a relation may be defined on different set of attributes, as long as 
they are a subset of the relation schema.” [12].  

4.1 Example 
The following is a walk-through using the relational operations on RDF to produce the same 
results that are given by the SPARQL specification. 

Using a limited set of sample tuples from the typical supplier and part examples given by 
Date [6] the following relations can be created: 

Suppliers 

sno:sno sp:sp 
Supplier1 Parts1 
Supplier1 Parts2 
Supplier2 Parts1 
Supplier2 Parts2 
 

Parts 
sp:sp char:city 
Parts1 ‘London’ 
Parts2 ‘Paris’ 

A similar representation using relations modified to use RDF components (RDF relations) is 
shown below: 
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Suppliers and Parts 

s1:subject p1:predicate o1:object 
Supplier1 #sno Supplier1* 
Supplier1 #sp Parts1 
Supplier1 #sp Parts2 
Suppler2 #sno Supplier2* 
Suppler2 #sp Parts1 
Suppler2 #sp Parts2 
Parts1 #sp Parts1* 
Parts2 #sp Parts2* 
Parts1 #city ‘London’ 
Parts2 #city ‘Paris’ 
 
* Alternatively, Supplier1 and Parts1 as Subjects maybe modified to use blank nodes instead. 
  
A sample SPARQL query can be devised to return all the supplier numbers (sno), part 
numbers (pno) and cities. 

Sample Query 
SELECT ?sno ?pno ?city 
WHERE {   
  ?sno #sno Supplier1 .  
  ?sno #sp ?pno .  
  ?pno #city ?city  
} 
 
This results in the following relations being created for each constraint (using a relational 
restrict operation). 
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Relation 1 (?sno #sno Suppler1) 

?sno:subject p1:predicate o1:object 
Supplier1 #sno Supplier1 
 
Relation 2 (?pno #city ?city) 

?pno:subject p3:predicate ?city:object 
Part1 #city ‘London’ 
Part2 #city ‘Paris’ 

Relation 2 (?sno #sp ?pno) 

?sno:subject p2:predicate ?pno:object 
Supplier1 #sp Part1 
Supplier1 #sp Part2 
Supplier2 #sp Part1 
Supplier2 #sp Part2 
Part1 #sp Part1 
Part2 #sp Part2 

 
By performing joins the following results are obtained: 

Join Relation 1 and Relation 2 

?sno:subject p1:predicate o1:object p2:predicate ?pno:object 
Supplier1 #sno Supplier1 #sno Part1 
Supplier1 #sno Supplier1 #sno Part2 
 
Join of Relation 1, 2 and 3 
?sno:subject p1:predicate o1:object p2:predicate ?pno:subjectobject p3:predicate ?city:object 

Supplier1 #sno Supplier1 #sno Part1 #city ‘London’ 

Supplier1 #sno Supplier1 #sno Part2 #city ‘Paris’ 

 
Using the relational project to produce only the variables defined in the SELECT part of the 
SPARQL query the final result is: 

Query Result 

?sno:subject ?pno:subjectobject ?city:object 
Supplier1 Part1 ‘London’ 
Supplier1 Part2 ‘Paris’ 
 
This is consistent with the expected result when performing a SPARQL query using current 
SPARQL implementations. 

4.2 RDF to Relational Types 
JRDF’s query layer consists of a NodeType interface used to indicate the type of an 
attribute.  It consists of a “composedOf” method that returns a set of node types.  The node 
types supported consist of RDF positional types (SubjectNodeType, PredicateNodeType 
and ObjectNodeType), composite positional types (such as SubjectPredicateNodeType and 
all other unique combinations) and value types (BlankNodeType, LiteralNodeType and 
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URIReferenceNodeType). 

One of the first designs proposed to be used in JRDF was to calculate compositional nodes 
during joins.  When two relations were joined and a variable appeared in two different places, 
a new node type was derived.  For example, the join of two relations on a variable that 
appears both as a subject and a predicate results in it being associated with a new type 
“subjectpredicate”.  Where, “subjectpredicate” is a composite type made of a subject and 
predicate node type. 

The current solution however, is to evaluate the query, record where the variables are being 
used in the query, and associate composite types to any variables located in more than one 
place.  This process was adapted from an existing one where a check was being performed to 
ensure that all the variables in the SELECT clause are bound in the WHERE clause.  This 
means that the join code does not have to infer new attribute types and the composite types 
are used up front when performing restrict operations. 

4.3 Modifying Relational Joins 
Two different types of joins, extensions of the original relational operations, were required for 
SPARQL support:  

• Outer union - is a union that does not require both relations to be of the same 
matching headings or types. 

• A null accepting join operation - relations of different types may be joined and a tuple 
is only rejected if bound variables have differing values. 

 
The removal of matching types for union and a null accepting join may not seem to be 
initially compatible with the relational model.  However, it is merely a convenience, and it is 
simply a combination of two or more relations.  The following is an example of several 
minimum union operations as described on page 4 of Galindo-Legaria [11]: 

CUSTOMERS ORDERS ITEMS’ 
C O I 
C O - 
C - - 
 
This shows the result where the first row represents customers with orders for items, 
followed by customers with orders and then customers without orders.  As described in the 
paper, projecting based on the required predicates can retrieve relations of the same type.  
Essentially, this is a representation of three traditional relations. 

From this perspective, null accepting joins can be seen as an optimisation for performing 
operations on multiple relations in one pass. 

The number of arguments, or arity, of operators in SPARQL is another example where the 
definition of operators is unclear.  For example Pérez et al. [22] says, “using the binary 
operators UNION, AND and OPT, and FILTER”, even though OPTIONAL is nadic (it has 1 
or more parameters) in SPARQL’s test cases [15].  In Tutorial D and the relational algebra 
defined by Date [6], join and union are both nadic.  The associative nature of left outer join 
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and hence the mapping of OPTIONAL to relational algebra (that does not allow order 
specified in its nadic operations) means there is a slight implementation difficulty.  In JRDF, 
OPTIONAL operations are turned into a series of dyadic operations and if a monadic 
OPTIONAL operation is used it simply returns the initial binding. 

Even though it is unclear if SPARQL’s JOIN and OPTIONAL are truly nadic, JRDF 
supports nadic versions of these operations.  In order to provide this support it requires the 
equivalent of TABLE_DEE (true) and TABLE_DUM (false) (the two 0 degree or nullary 
relations) to be defined.  TABLE_DEE is the relation that contains one row, is analogous to 
true and is the identity with respect to JOIN.  TABLE_DUM is the relation that contains no 
rows and is analogous to false.  This also allows questions that result in a yes/no or true/false 
result to be returned. 

The minimum union of TABLE_DEE and another relation is always just that relation.  Using 
relational algebra the various combinations of the nullary relations (TABLE_DEE and 
TABLE_DUM or in JRDF RelationDEE and RelationDUM) in SPARQL operations are: 

SPARQL Join 

 DEE DUM Relation 
DEE DEE DUM Relation 
DUM DUM DUM DUM 
Relation Relation DUM Relation 

SPARQL Union 

 DEE DUM Relation 
DEE DEE DEE DEE 
DUM DEE DUM Relation 
Relation DEE Relation Relation 

 

SPARQL Optional 

 DEE DUM Relation 
DEE DEE DEE DEE 
DUM DUM DUM DUM 
Relation Relation Relation Relation 
 

4.4 Order Independent Joins 
An alternative version of OPTIONAL that was order independent but had similar semantics 
to OPTIONAL was investigated.  As a suitable example, data was combined from FOAF 
files: http://clark.dallas.tx.us/kendall/foaf.rdf and http://eikeon.com/foaf.rdf.  Sample queries 
were performed first following SPARQL semantics and then following the order independent 
semantics.  For example, the query: 
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SELECT ?name ?mbox ?nick 
WHERE {   
  ?x <http://xmlns.com/foaf/0.1/name> ?name . 
  OPTIONAL {   
    ?x <http://xmlns.com/foaf/0.1/nick> ?nick  
    OPTIONAL {   
      ?x <http://xmlns.com/foaf/0.1/mbox> ?mbox  
    } 
  } 
} 
 
 
Using standard SPARQL semantics it produces: 

?name:object ?mbox:object ?nick:object 
“Kendall Grant Clark” mailto:kclark@ntlug.org “k” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “kclark” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “kendallc” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “k” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “kclark” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “kendallc” 
“Daniel Krech”  “eikon” 
 
However, changing the order of the mbox and nick constraints produces a different result: 

SELECT ?name ?mbox ?nick 
WHERE { 
  ?x <http://xmlns.com/foaf/0.1/name> ?name . 
  OPTIONAL {   
    ?x <http://xmlns.com/foaf/0.1/mbox> ?mbox  
    OPTIONAL {   
      ?x <http://xmlns.com/foaf/0.1/nick> ?nick  
    } 
  } 
} 
 
?name:object ?mbox:object ?nick:object 
“Kendall Grant Clark” mailto:kclark@ntlug.org “k” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “kclark” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “kendallc” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “k” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “kclark” 
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“Kendall Grant Clark” mailto:kendall@monkeyfist.com “kendallc” 
“Daniel Krech”   
 
The important distinction to make is that the last row does not contain the nickname “eikon” 
- this is the expected behaviour. 

If full outer join is used as the implementation behind the OPTIONAL operation then it is no 
longer order dependent.  In turn, this provides the user with an easier way to express their 
requirements.  The drawback to full outer join is that it produces results that contain a large 
number of more sparsely populated rows.  Using the previous two queries the rows returned 
have mboxes and no name or just nicknames.  Using the previous query the results are: 

?name:object ?mbox:object ?nick:object 
  “eikon” 
“Daniel Krech”  “eikon” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “k” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “kclark” 
“Kendall Grant Clark” mailto:kclark@ntlug.org “kendallc” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “k” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “kclark” 
“Kendall Grant Clark” mailto:kendall@monkeyfist.com “kendallc” 
 mailto:benkoo@ntr.net  
 mailto:bparsia@email.unc.edu  
 mailto:danbri@w3.org  
 mailto:edd@usefulinc.com  
 mailto:eikeon@eikeon.com  
 mailto:em@w3.org  
 mailto:gwachob@wachob.com  
 mailto:jim@jibbering.com  
 mailto:kendall@monkeyfist.com  
 mailto:khampton@totalcinema.com  
 mailto:libby.miller@bristol.ac.uk  
 mailto:me@aaronsw.com  
 mailto:niel@bornstein.atlanta.ga.us  
 mailto:uche.ogbuji@fourthought.com  
 
 
Note the rows with the values of “eikon” or “mailto:kendall@monkeyfist.com” which have 
the same bound values as other result but have more unbound values than other results 
returned.  Subsumption can be used in order to remove these tuples. 
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The subsumption algorithm used in JRDF’s implementation was implemented by modifying 
the join algorithm.  A tuple from the left hand side of the join was compared with each of the 
tuples on the right hand side.  If any of them shared a common attribute/value combination 
further comparison was applied.  In the case of the left hand side tuple having more values in 
it than the right hand side, and if the right hand side was a subset of the left hand side, then 
the right hand side tuple would be marked for removal. 

4.5 Effect of Optimisation 
A performance evaluation between two algorithms in JRDF and Jena’s in memory 
implementation was performed.  

Jena and JRDF were run using Java 5.0 (version 1.5.0_06) under OS X 10.4.7 on a 2GHz 
Intel Core Duo with 2GB of main memory.  Each query was performed 3 times and an 
average made.  Before executing each query the Java process was restarted.  In order to reduce 
the impact of garbage collection on the results a maximum and initial heap size was set to 
1024MB. 

The following queries were performed on a set of FOAF data consisting of 101 282, 50 822 
and 25 520 statements. 

Query 1 
PREFIX foaf: <http://xmlns.com/foaf/0.1/>  
SELECT ?mbox ?name  
{ 
  { ?x foaf:mbox ?mbox } UNION  
  { ?x foaf:mbox ?mbox . ?x foaf:name ?name }   
} 
 

Query 2 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?mbox ?name  
{ 
  ?x foaf:mbox ?mbox .  
  OPTIONAL { ?x foaf:name ?name } .  
} 
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Query 3 
PREFIX foaf: <http://xmlns.com/foaf/0.1/>  
SELECT ?mbox ?name ?nick  
{   
  ?x foaf:mbox ?mbox .  
  OPTIONAL { ?x foaf:name ?name } .  
  OPTIONAL { ?x foaf:nick ?nick } . 
} 
 
 
 
The two algorithms in JRDF are implementations of OPTIONAL using either a combination 
of join, outer join and antijoin (labeled “JRDF” in the graph) or minimum union (labeled 
“JRDF w/ Sub.” in the graph).   

 
Figure 2, Query Performance of Various SPARQL Implementations 

 

The difference in performance between the two implementations in JRDF can be quantified 
by comparing how many times faster “JRDF w/ Sub.” is compared to “JRDF”: 
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Query ~100K Statements ~50K statements ~25K statements 
Query 2 1.76 1.82 2.19 
Query 3 1.68 1.68 1.96 
 
 
Query 1 uses only UNION and join (“.”) and so there are no significant differences between 
the two. 
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5 Future Work 

5.1 Extending the use of the Relational Model 
The relational model offers the ability to simplify and extend SPARQL.  For example, the 
two SPARQL operations: CONSTRUCT and ASK are designed to produce two alternate 
result forms.  The first returns an RDF graph and the second returns a true/false result 
depending on if the query matches the given constraints.  The creation of new operations is 
not required and is suitably supported by the relational model.   

The relational model is capable of returning results sets that allow the reconstruction of the 
original graph or to create a new one based on the results returned.  Likewise, with the 
introduction of the true and false relation, TABLE_DEE and TABLE_DUM [6] respectively, 
SPARQL’s ASK operation can be performed by performing a project over no columns.  If 
there are results returned a project over no columns will produce TABLE_DEE or true. 

The set-based operation SUMMARIZE provides the same functionality as SQL’s COUNT, 
SUM, MAX and MIN that “are not aggregate operators, though most of them do have the 
same names as aggregate operators (SQL confuses the two notions, with unfortunate 
results).” [6]. 

The SUMMARIZE operation can also be used to generate a new relation that represents a 
graph based on the results of a query.  Each row will produce new entries in the graph. 

Some examples of results being turned into graphs include: 

?s1:subject ?s2:subject ?p:predicate ?o1:object  ?o2:object 
a b c d e 
a c c d e 
 
Produces the set of statements: {{a, c, d}, {b, c, d}, {a, c, e}, {b, c, e}, {c, c, d}, {c, c, e}} 

?foo:URI ?bar:URI 
a b 
 
Produces the set of statements: {{a, a, a},  {a, a, b},  {a, b, a},  {a, b, b}, {b, a, a}, {b, a, b}, 
{b, b, a}, {b, b, b}} 

Finally, the use of nested relations [6] may off a more efficient way of returning results than 
currently provided [3]. 

5.2 Further Optimisations 
If compositional semantics is chosen for SPARQL then many other optimisation techniques 
could be applied.  These include the original System-R optimisation but also some of the 
more recent attempts to optimise and distribute left outer join and antijoin queries. 

As noted, some of the optimizations given in Galindo-Legaria’s work [13] have not been 
implemented.  Treating relations that contain null values as a collection of non-null relations 
may be used to implement the given simplifications.  The effect of maintaining many relations 
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may, however, reduce the advantages of this approach.   

Many of these optimisation techniques require the creation of query graphs which themselves 
could be implemented using RDF.  Given the right operations SPARQL queries could be 
performed to find optimal query paths and could be useful in other domains. 

The original work performed by Galindo-Legaria [13] has been criticised as being able to 
handle only simplistic queries where queries that require Cartesian products or predicates that 
refer to more than one table [22, 24].  To improve the instances where outer joins, inner joins 
an antijoins can be optimized [24]: 

“the normal eligibility list of each predicate with some additional information and use it to 
determine the correct join order...An extended eligibility list (EEL) of a predicate p includes 
all the tables needed as the input to p in order to get the correct answer”   

This approach allows the efficient handling of multiple conjuncts, hyper-predicates and 
Cartesian products and could be applied to SPARQL optimisation. 

5.3 A Minimum Union version of OPTIONAL Using SQL 
While SQL is not a natural match to RDF it is a widely deployed platform that has proven 
scalability and performance characteristics and remains a key piece of infrastructure used in 
organisations.  With this in mind it is important to consider how this work can be applied to 
SQL databases. 

Existing work translating SPARQL to SQL [2] did not apply a minimum union approach to 
implementing OPTIONAL.  Larson and Zhou have applied the Galindo-Legaria approach of 
translating queries into join-disjunctive form, where outer join queries are implemented as 
outer unions, using SQL for view matching [19].  The results from this work have shown that 
the outer join version of the queries outperformed existing approaches and could 
subsequently be applied to an SQL version of OPTIONAL. 
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6 Conclusion 
Even at this early stage of development, research has highlighted the requirement to apply a 
formal model to SPARQL.  The benefits of a formal model have been shown in previous 
query languages and it is apparent that SPARQL would also benefit from having a formal 
model.  An applicable formal model must follow a number of explicit requirements including 
being compatible with the RDF data model. 

An appropriate formal model, the relational model, was used to implement parts of the RDF 
querying language, SPARQL.  Previous works on optimisation techniques, based on the 
relational model, were used to efficiently implement the SPARQL operations OPTIONAL 
and UNION.  An order independent version of OPTIONAL was also considered in order to 
provide a possible alternative to the current semantics of SPARQL’s OPTIONAL. 

Relational optimisation techniques have been employed over a considerable period of time 
and constitute a significant amount of existing work.  It has been shown that some of these 
techniques can successfully be applied to SPARQL but more work is needed.  These 
techniques are reliant on a method of bottom-up or compositional evaluation that is not 
currently supported by SPARQL.  The negative effect, of not applying this method of 
evaluation, would be to hamper intuitiveness and reduce the potential for future optimisation 
techniques. 
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